
Lecture XXI: Hawking radiation
(Dated: November 13, 2019)

I. OVERVIEW

In our previous lectures, we found that black holes have an area that can only grow with time, and moreover we
had found a relation that looked suspiciously like the first law of thermodynamics with horizon area playing the role
of entropy. We want to complete this study by showing that in fact black holes do radiate as blackbodies at some
temperature T . This temperature is exactly the right quantity to fit in a thermodynamic relation, and it will tell us
the constant of proportionality between area A and entropy S.

The treatment of this requires quantum field theory in curved spacetime; we will first do the classical field theory,
and then paste quantum mechanics on as appropriate. For much more on this subject, see the monograph by Birrell
& Davies, Quantum fields in curved spacetime.

II. SCALAR WAVES IN THE SCHWARZSCHILD SPACETIME

Let’s begin this study by going back to the Schwarzschild spacetime,

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2(dθ2 + sin2 dφ2). (1)

We will consider the real scalar wave equation in this spacetime, given by

�ψ ≡ gαβ∇α∇βψ = 0. (2)

(I could do something more sophisticated such as electromagnetic or gravitational waves, or spinors, but this introduces
indices that are not essential to the problem at hand. Scalars are simple and there is only one way to write their
second derivative.)

The scalar wave equation simplifies to

gαβ∂α∂βψ − gαβΓγβα∂γψ = 0, (3)

or – plugging in the Christoffel symbols from Schwarzschild –
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r2 sin2 θ
∂2
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r
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r2

)
∂rψ +

cos θ

r2 sin θ
∂θψ = 0. (4)

This equation can undergo separation of variables. Let’s write its multipole moments:

ψ(t, r, θ, φ) =

∞∑
`=0

∑̀
m=−`

1

r
Ψ`m(t, r)Y`m(θ, φ), (5)

where we put in the factor of r in order to make the math simpler later (it is like putting in the factor of r in a 3D
spherical potential quantum mechanics problem: it takes out the ∼ 1/r variation due power dilution in a spherical
wave). The angular derivatives in Eq. (4) are 1/r2 times the angular component of the Laplacian, and thus give a
factor of −`(`+ 1)/r2:

− 1

1− 2M/r
∂2
t

Ψ`m

r
+

(
1− 2M

r

)
∂2
r

Ψ`m

r
+

(
2

r
− 2M

r2

)
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r
= 0. (6)

The next step is to do the substitution from r to r̄. We use:

∂r =
dr̄

dr
∂r̄ =

1

1− 2M/r
∂r̄, (7)

so that Eq. (6) multiplied by r becomes
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Using the product rule extensively and the fact that

∂r̄
1

1− 2M/r
=

(
1− 2M

r

)
∂r

1

1− 2M/r
=
−2M/r2

1− 2M/r
and ∂r̄

1

r
= − 1

r2
∂r̄r = −1− 2M/r

r2
, (9)

we get a long chain of simplifications. This results in

− 1

1− 2M/r
∂2
t Ψ`m +

1

1− 2M/r
∂2
r̄Ψ`m −

(
2M

r3
+
`(`+ 1)

r2

)
Ψ`m = 0. (10)

We may multiply through by 1− 2M/r and obtain:

−∂2
t Ψ`m + ∂2

r̄Ψ`m −
(

1− 2M

r

)(
2M

r3
+
`(`+ 1)

r2

)
Ψ`m = −∂2

t Ψ`m + ∂2
r̄Ψ`m − U`(r̄)Ψ`m = 0, (11)

which looks like a standard 1D wave equation with a potential. The potential goes exponentially to zero as r̄ → −∞
(recall: 1 − 2M/r ∝ er̄/2M ) and to zero as ∼ 1/r̄2 (or faster for ` = 0) at large r̄. Indeed, if M → 0, this looks
like a standard angular momentum barrier. Both far from the hole and near the horizon, this is a freely propagating
wave equation! The problem is described by a power transmission coefficient, T`(ω) at frequency ω (i.e., for a wave
at Ψ ∝ e−iωt), which is the fraction of the power incident from ∞ in the `m wave mode that is absorbed by the hole.
In quantum mechanics, it is the probability that an incident particle in this partial wave is absorbed by the hole.

III. THE MIRROR FALLING INTO THE HOLE

Now let’s imagine that a spherical mirror falls into the black hole in a spherically symmetric way. (This is idealized,
but is intended to be the simplest way to get Hawking radiation. The key point is that all outgoing waves in the
system arose from ingoing waves that just barely managed to make it back out before they crossed the horizon; the
details don’t affect that basic outcome.) The mirror is a boundary condition ψ = 0 or Ψ`m = 0 at its world line in
(t, r̄)-space.

Once the mirror is far past the potential, the solution for Ψ`m is a simple ingoing and outgoing plane wave,

Ψ`m(t, r̄) = A`m↑(η̄) +A`m↓(ξ̄), (12)

where η̄ = t − r̄ and ξ̄ = t + r̄, as usual. These describe the upward- and downward-going wave solutions near the
hole. We must have

A`m↑(η̄) = −A`m↑(ξ̄M(η̄)), (13)

where ξ̄M(η̄) is the mirror’s world-line. Now in the (ξ, η)-diagram, the mirror crosses the horizon (η = 0) at some
critical ξc with some slope 1/(qξc). Therefore the world line satisfies

ξ̄M(η̄) = 4M ln ξ = 4M ln(ξc + qξcη) = 4M ln(ξc(1− qe−η̄/4M )) ≈ K − 4Mqe−η̄/4M , (14)

where K is a constant. Therefore the outward-reflected signal is the inversion of the ingoing signal, but with the time
axis remapped acoording to Eq. (14). Ingoing signals at ξ̄ ≥ K never reflect.

But of course, classically if the incident amplitude is zero, then nothing comes back. Quantum mechanically,
however, we know that the scalar field has quantum fluctuations that go in. The big question for us, then, is what
comes out.

IV. HAWKING RADIATION

We will now derive what happens to quantum fluctuations going into the hole. We know there is 1
2~ω of energy even

in the vacuum state of every wave mode. This is true for even extraordinarily high frequencies. It will turn out that
these fluctuations get turned into real outgoing modes. They are extraordinarily redshifted, and their redshift grows
with time, but even when the redshift gets to some extraordinarily large value, there was always an extraordinarily
high-frequency ingoing wave whose vacuum fluctuations are redshifted to the frequency of interest. These redshifted
and virtual-turned-real waves are known as Hawking radiation.
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A. Quantum fluctuations

Let’s now consider quantum fluctuations. For a scalar field, the amplitudes falling into the black hole satisfy

VarAl =

∫ [
Nl(ω) +

1

2

]
~ω × dω

2πω2
, (15)

where the first part of the integrand is the energy per mode for a particle occupation number Nl at frequency ω. The
second part has normalization factors: we divide by 2 since the energy is half kinetic and half potential; we divide by
1
2ω

2 since the kinetic energy density is 1
2 (∂tΨ)2, not 1

2Ψ2; and we divide by 2π since we have constructed an energy
density per mode, and the number of ingoing modes per unit length (per unit r̄) is ∆ω/2π. Now of course this is
a variance; if we want the covariance at two different ingoing times, ξ̄ and ξ̄′, we must insert the appropriate phase
factor:

〈A↓(ξ̄)A↓(ξ̄′)〉 =

∫ [
N↓(ω) +

1

2

]
~ω cosω(ξ̄ − ξ̄′) dω

2πω2
. (16)

(Since A↓ is real, we get only a cosine and not a complex exponential.) If vacuum fluctuations only are going down,
so that N↓(ω) = 0, we have

〈A↓(ξ̄)A↓(ξ̄′)〉 =
~

4π

∫ ∞
ωmin

cosω(ξ̄ − ξ̄′) dω

ω
. (17)

I inserted a range of frequencies here, but explicitly put in ωmin since the integral will diverge as ωmin → 0. This is an
infrared divergence, and if we are doing things right it shouldn’t be a problem. We can understand the divergence by
substituting z = ω(ξ̄− ξ̄′), and then noting that the intergral approaches

∫
dz/z as z → 0; thus there is a logarithmic

divergence of the lower limit: ∫ ∞
zmin

cos z
dz

z
→ lnC − ln zmin = − ln

zmin

C
(18)

for some constant C, and so

〈A↓(ξ̄)A↓(ξ̄′)〉 = − ~
4π

ln
ωmin|ξ̄ − ξ̄′|

C
. (19)

B. The expectation value of outgoing waves

Now let’s consider the outgoing waves. We have

〈A↑(η̄)A↑(η̄
′)〉 = 〈A↓(ξ̄M(η̄))A↓(ξ̄M(η̄′))〉

= − ~
4π

ln
4Mqωmin|e−η̄/4M − e−η̄

′/4M |
C

= − ~
4π

[
− η̄ + η̄′

8M
+ ln sinh

|η̄ − η̄′|
8M

+ ln
4Mωmin

C

]
. (20)

Let’s now subtract out the vacuum fluctuations, which are Eq. (17) but with ξ̄, ξ̄′ → η̄, η̄′:

〈A↑(η̄)A↑(η̄
′)〉vac. subtr. = − ~

4π

[
− η̄ + η̄′

8M
+ ln sinh

|η̄ − η̄′|
8M

+ ln
4Mωmin

C
− ln

ωmin|η̄ − η̄′|
C

]
= − ~

4π

[
− η̄ + η̄′

8M
+ ln

sinh[|η̄ − η̄′|/8M ]

|η̄ − η̄′|/8M
− ln 2

]
. (21)

Note that this result is now finite. In the expression in brackets, the last term is a constant, so only contributes at
zero frequency, and the first term – being a linear function of η̄ and η̄′ – will again contribute at zero frequency. So
we don’t care about them if we are interested in outgoing radiation. But the second term does something special.
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C. The spectrum of Hawking radiation

We want to equate 〈A↑(η̄)A↑(η̄
′)〉vac. subtr. to an integral of the type Eq. (16) without the + 1

2 contribution due to
vacuum fluctuations (which we have already subtracted). It is easiest to do this if we use the identity:

sinhx

x
=

∞∏
n=1

[
1 +

x2

(πn)2

]
, (22)

which is true since sinhx/x = 1 at x = 0, it has no singularities, and it has zeroes at ±πin for n = 1, 2, 3, ... . This
means

− ~
4π

ln
sinh[|η̄ − η̄′|/8M ]

|η̄ − η̄′|/8M
= − ~

4π

∞∑
n=1

ln

[
1 +

∆η̄2

64πM2n2

]
, (23)

where we set ∆η̄ ≡ η̄ − η̄′.
On the other hand, if we define

fµ(∆η̄) =

∫ ∞
0

e−µω cosω∆η̄
dω

ω
, (24)

then

∂∆η̄fµ(∆η̄) = −
∫ ∞

0

e−µω sinω∆η̄ dω

= =
∫ ∞

0

e−(µ+i∆η̄)ω dω

= = 1

µ+ i∆η̄

= − ∆η̄

µ2 + ∆η̄2

= −1

2
∂∆η̄ ln(µ2 + ∆η̄2)

= −1

2
∂∆η̄ ln

(
1 +

∆η̄2

µ2

)
. (25)

Integrating both sides, and recalling that the additive constant is another zero-frequency contribution, we see that
each term in Eq. (23) is an fµ with µ = 8πMn:

〈A↑(η̄)A↑(η̄
′)〉vac. subtr. =

~
2π

∞∑
n=1

f8πMn(∆η̄) + [zero frequency terms]. (26)

Comparison to Eq. (16) shows that this is the spectrum of radiation whose occupation number is an infinite sum of
exponentials, i.e., a geometric series:

N↑(ω) =

∞∑
n=1

e−8πMnω =
1

e8πMω − 1
. (27)

This is a blackbody spectrum at temperature given by

TH =
~

8πkBM
=

~c3

8πkBGM
. (28)

Thus the horizon appears as a blackbody with temperature TH. A black hole is not perfectly black! Note that – due
to the appearance of ~ – this is a purely quantum phenomenon.

The blackbody temperature of a black hole in astrophysical units is

TH = 60

(
1M�
M

)
nK, (29)

which is small enough that we don’t need to worry about it for astrophysical purposes, and we have no way of
measuring it in any practical circumstance. However, this thought experiment is very important for fundamental
physics and probably for quantum gravity.

In what follows, I will set ~ and kB to 1, i.e., I will use Planck units.
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V. THERMODYNAMICS, STATISTICAL MECHANICS, AND EVAPORATION

Let’s return to the thermodynamic identity,

dM = dT dS + Ω dJ. (30)

For the Schwarzschild black hole (J = 0), if we interpret TH as the temperature T , we see that the entropy satisifies

S =

∫
dM

T
=

∫
8πM dM = 4πM2 =

1

4
A, (31)

where A is the horizon area. So there is indeed an entropy proportional to the horizon area, with a factor of 1
4 . This

is consistent with the interpretation of the area theorem in terms of thermodynamics.
This suggests that there is some microphysical degree of freedom that stores one “bit” (∆S = ln 2) on the horizon

for every 4 ln 2 square Planck lengths of horizon area (i.e., for every 7.3× 10−70 m2). The true nature of these degrees
of freedom remains unknown. But again, this is probably a big hint in terms of how to construct a consistent theory
of quantum gravity.

Another remarkable implication of Hawking radiation is that a black hole will evaporate: since it is a blackbody, it
will lose mass at a rate of

−Ṁ =

∞∑
`=0

∑̀
m=−`

∫ ∞
0

1

e8πMω − 1
ωT`

dω

2π
, (32)

where we have summed over modes, introduced the barrier transmission probability T` (only particles that pass
through the barrier will escape), and put in the energy per particle ω and flux of modes dω/2π. This is finite
because the barrier gets higher with ` and so at large `, T` → 0. Also this is for a scalar particle; for other types
of particles (e.g., photons or gravitons) one also needs a polarization sum and the correct transmission probability.
For small enough (hot enough) black holes, one further needs to include massive particles such as neutrinos or even
electrons/positrons.

The result from Eq. (32) can be estimated at order of magnitude to be ∼ 1/M2 (the sums give factors of order
unity and the integrand peaks when ω ∼ 1/M). Therefore a black hole is expected to have a lifetime of order ∼M3

(in Planck units). A stellar-mass black hole has a mass of ∼ 1038 Planck masses, so a lifetime of ∼ 10114 Planck times
or 1064 years (assuming it doesn’t eat anything; in the present-day Universe, it is eating CMB photons even if there
is nothing else available, so it is still growing). But these black holes are not forever. It has been estimated that black
holes born in the early Universe at M < 5 × 1011 kg would have evaporated by today [see MacGibbon, PRD 44:376
(1991)].

Quantum mechanics is unitary, and if taken literally this would suggest that the radiation emitted by a black hole
is not just random thermal radiation: it should encode the state of the matter that went into making the black hole.
It is generally expected that this is true in a full theory of quantum gravity, but of course we don’t know for sure!


