
Lecture XVI: Spherically symmetric stars
(Dated: October 25, 2019)

I. OVERVIEW

We now turn our attention to relativistic stars. We will focus in this lecture on the derivation of the metric for a
static spherically symmetric star and the relations between metric quantities, density, and pressure.

This lecture covers roughly Chapter 10 of the book.

II. SYMMETRIES

Let us first define carefully what we mean by a “spherically symmetric” system. Recall that a sphere of radius r
has a metric

ds2 = r2(dθ2 + sin2 θ dφ2), (1)

where θ is colatitude and φ is longitude. Note that “r” is not necessarily a physically measurable radius with a ruler
(we have not said anything yet about the “interior” to the sphere), but 2πr is a physically measurable circumference
and 4πr2 is a physically measurable area. This establishes gθθ = r2, gθφ = 0, and gφφ = r2 sin2 θ.

In a 4D spacetime, we need two more coordinates. We will use r itself as one of the coordinates, so we need one
more which we will call t (so far, “t” is just a name). The coordinates r and t will tell us which 2-sphere we are
on, and θ and φ tell us where on the 2-sphere. In this case, the vector er that points to larger radius but without
changing colatitude or longitude must be orthogonal to eθ that points south, since otherwise the dot product er · eθ
could be used to distinguish south from north. Thus spherical symmetry requires grθ = er · eθ = 0. Similar rules
eliminate grφ, gtθ, and gtφ. Then:

ds2 = gtt dt2 + 2grt dr dt+ grr dr2 + r2(dθ2 + sin2 θ dφ2). (2)

Moreover, gtt, grt, and grr are functions of only r and t.
A further simplification can be obtained if the system is stationary or “time-translation invariant”: this means that

we can choose the coordinates such that the metric coefficients don’t depend on t. In this case:

ds2 = gtt(r) dt2 + 2grt(r) dr dt+ grr(r) dr2 + r2(dθ2 + sin2 θ dφ2). (3)

We can eliminate grt if we define a new time variable t̄ by:

t̄ = t+

∫
grt(r)

gtt(r)
dr → dt = dt̄− grt(r)

gtt(r)
dr. (4)

This change of coordinate system gets rid of the cross-term gr̄t̄, and in what follows once we have done this we will
omit the bar. It is furthermore conventional to write gtt and grr as exponentials:

ds2 = −e2Φ(r) dt2 + e2Λ(r) dr2 + r2(dθ2 + sin2 θ dφ2). (5)

This is the usual form for the metric of a spherically symmetric star. We write the coordinates in the order trθφ.
We expect by looking at this that Φ(r) will be identified with the usual Newtonian gravitational potential in the
weak-field limit.

In fact this doesn’t completely describe the coordinate system, since we could rescale t by t = e∆t̄ with constant ∆
and then Φ(r) → Φ(r) + ∆. Thus we expect an arbitrary additive offset to Φ. For isolated stars, we will fix this by
setting Φ = 0 at r =∞.

III. THE STRESS-ENERGY TENSOR

For a stationary spherically symmetric star, we will go to a particular location in the star. We suppose the matter
to be stationary in the sense that a fluid parcel has dr/dτ = 0 (no radial motion) and dθ/dτ = dφ/dτ = 0 (no angular
motion). Thus this parcel must have 4-velocity

uα → (e−Φ, 0, 0, 0), uα → (−eΦ, 0, 0, 0). (6)
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If the fluid in the star is a perfect fluid, described by a density and a pressure, then

Tµν = ρuµuν + p(gµν + uµuν)→


e2Φρ 0 0 0

0 e2Λp 0 0
0 0 r2p 0
0 0 0 r2p sin2 θ

 . (7)

Again, in a stationary spherically symmetric star, we take ρ and p to be functions of r only.

IV. THE CHRISTOFFEL SYMBOLS AND HYDROSTATIC EQUILIBRIUM

A stationary star must be in hydrostatic equilibrium: this means that the pull of gravity downward balances the
pressure gradient pushing upward. To see how this works in GR, let’s recall the conservation of stress-energy in the
form

Tµ
ν

;ν = Tµ
ν
,ν − ΓαµνTα

ν + ΓνανTµ
α = 0. (8)

In GR, there is not any gravitational “force” on the right-hand side of the equation that acts as a source of energy
or momentum; rather the coordinate system (e.g., given value of r) is accelerating upward relative to a freely-falling
frame. This acceleration of the coordinate system is described by the Christoffel symbols.

The down-up-index version of the stress-energy tensor – which we are using here – is

Tµ
ν →

 −ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (9)

The Christoffel symbols can be computed in the usual way. They are as follows (using the ′ symbol to indicate an
r-derivative):

Γrtt = e2Φ−2ΛΦ′,

Γtrt = Γttr = Φ′,

Γrrr = Λ′,

Γrθθ = −re−2Λ,

Γθrθ = Γθθr =
1

r
,

Γrφφ = −re−2Λ sin2 θ,

Γφrφ = Γφφr =
1

r
,

Γθφφ = − sin θ cos θ,

Γφθφ = Γφφθ = cot θ, (10)

and the others are zero.
In Eq. (8), the t, θ, and φ components are all trivially satisfied. The r component of the equation reads:

(p′)−
(
−Φ′ρ+ Λ′p+

1

r
p+

1

r
p

)
+

(
Φ′p+ Λ′p+

1

r
p+

1

r
p

)
= 0 (11)

(the parentheses correspond to terms in Eq. 8) or

p′ = −Φ′(ρ+ p). (12)

This is equivalent to the Newtonian equation p′ = Φ′ρ, but with the added pressure term on the right-hand side: in
GR, it takes pressure to hold up pressure!
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V. THE EINSTEIN EQUATIONS

We now turn to the Einstein equations, which we will need to relate Λ and Φ to the properties of the star. We need
the Ricci tensor first; recall that

Rµν = Γαµν,α − Γαµα,ν + ΓαδαΓδµν − ΓαδνΓδµα. (13)

We may expand these and find that the non-zero components are

Rtt = ([e2Φ−2ΛΦ′]′)− (0) +

([
Φ′ + Λ′ +

2

r

]
e2Φ−2ΛΦ′

)
− (2e2Φ−2ΛΦ′2)

= e2Φ−2Λ

[
Φ′′ + Φ′2 − Λ′Φ′ +

2

r
Φ′
]
,

Rrr = (Λ′′)−

([
Φ′ + Λ′ +

2

r

]′)
+

([
Φ′ + Λ′ +

2

r

]
Λ′
)
−
(

Φ′2 + Λ′2 +
1

r2
+

1

r2

)
= −Φ′′ + Φ′Λ′ +

2

r
Λ′ − Φ′2,

Rθθ = ([−re−2Λ]′)− (− csc2 θ) +

([
Φ′ + Λ′ +

2

r

]
[−re−2Λ]

)
−
(
−2e−2Λ + cot2 θ

)
= (−1 + rΛ′ − rΦ′)e−2Λ + 1, and

Rφφ = ([−re−2Λ sin2 θ]′ + ∂θ[− sin θ cos θ])− (0) +

([
Φ′ + Λ′ +

2

r

]
[−re−2Λ sin2 θ]− cos2 θ

)
−
(
−2e−2Λ sin2 θ − 2 cos2 θ

)
= [(−1 + rΛ′ − rΦ′)e−2Λ + 1] sin2 θ. (14)

(the parentheses correspond to terms in Eq. 13, and we used Γβtβ = 0, Γβrβ = Φ′ + Λ′ + 2
r , Γβθβ = cot θ, and

Γβφβ = 0). Adding these up we find that

R = gµνRµν = −e−2ΦRtt + e−2ΛRrr +
Rθθ + csc2 θ Rφφ

r2

= e−2Λ

[
−2Φ′′ − 2Φ′2 + 2Φ′Λ′ − 4

r
Φ′ +

4

r
Λ′ − 2

r2

]
+

2

r2
. (15)

This leads us to the Einstein tensor components:

Gtt = Rtt +
1

2
e2ΦR = e2Φ−2Λ

[
2

r
Λ′ − 1

r2

]
+

1

r2
e2Φ,

Grr = Rrr −
1

2
e2ΛR =

2

r
Φ′ +

1

r2
− 1

r2
e2Λ,

Gθθ = Rθθ −
1

2
r2R = e−2Λ

[
r2Φ′′ + r2Φ′2 − r2Φ′Λ′ + rΦ′ − rΛ′

]
, and

Gθθ = Rφφ −
1

2
r2 sin2 θ R = e−2Λ sin2 θ

[
r2Φ′′ + r2Φ′2 − r2Φ′Λ′ + rΦ′ − rΛ′

]
. (16)

Equating these with the stress-energy components gives

e−2Λ

[
2

r
Λ′ − 1

r2

]
+

1

r2
= 8πρ,[

2

r
Φ′ +

1

r2

]
e−2Λ − 1

r2
= 8πp, and

e−2Λ

[
Φ′′ + Φ′2 − Φ′Λ′ +

1

r
Φ′ − 1

r
Λ′
]

= 8πp. (17)

Because of spherical symmetry, the θθ and φφ components give the same result. In fact, because of automatic
conservation of the source, out of the 3 equations of Eq. (17) and the 1 equation of Eq. (12), only 3 are independent.
In fact, if we took the r derivative of the second equation in Eq. (17), and used Eq. (12) on the right hand side to
replace p′ with p and ρ, and then substituted the first equation of Eq. (17) for ρ, we would get the last equation in
Eq. (17). Therefore, our basic set of equations will be the first two equations in Eq. (17) and Eq. (12).
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VI. SOLVING FOR THE RADIAL STRUCTURE

At this point, it is customary to make another substitution. We write the new function m(r) (so far just a name!)
defined by

m =
1

2
r(1− e−2Λ) ↔ e−2Λ = 1− 2m

r
↔ Λ = −1

2
ln

(
1− 2m

r

)
. (18)

This is convenient when working with the Einstein equations because

m′ =
1

2
(1− e−2Λ) + rΛ′e−2Λ = 4πr2ρ (19)

if we use the tt Einstein equation and do the appropriate algebraic manipulation. The rr equation can be re-written
with the new variable as [

2

r
Φ′ +

1

r2

](
1− 2m

r

)
− 1

r2
= 8πp. (20)

We can solve this for Φ′:

Φ′ =
m+ 4πr3p

r(r − 2m)
. (21)

We finally recall Eq. (12):

p′ = −Φ′(ρ+ p). (22)

Equations (19), (21), and (22) are the basic equations of relativistic stellar structure. They are known as the Tolman-
Oppenheimer-Volkoff equations or TOV equations. To solve for the 4 functions – m(r), Φ(r), ρ(r), and p(r) – we need
these three equations as well as an equation relating ρ to p (an equation of state, which depends on the type of matter;
for example, for a neutron star, the equation of state contains the nuclear physics needed to solve the structure of the
star).

The metric now reads

ds2 = −e2Φ(r) dt2 +
dr2

1− 2m(r)/r
+ r2(dθ2 + sin2 θ dφ2). (23)

We also need boundary conditions.

A. Exterior solution

We can see that if the star has a boundary at r = R, then exterior to that boundary we have ρ = p = 0 and thence
m′ = 0. Thus we have m(r) constant for r > R; we call this constant M (again, so far just a name). Then Eq. (21)
says

Φ′ =
M

r(r − 2M)
→ Φ =

∫
M

r(r − 2M)
dr =

1

2
ln

(
1− 2M

r

)
. (24)

(I set the integration constant to give Φ = 0 at r =∞.) This lead us to the metric outside the star:

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2(dθ2 + sin2 θ dφ2). (25)

This is the Schwarzschild metric. At large radii (r � M), we have a small perturbation around flat spacetime with
htt = 2M/r and thus gravitational potential φ = −M/r; thus we infer that M is the gravitational mass of the star.
It is the mass appearing in Kepler’s 3rd law if the star itself is relativistic (R/M ∼ a few) but the particle orbiting it
is far away (r/M � 1).
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B. Inner condition

We need a solution at r = 0; for a star, the condition would be that m(0) = 0. If the central density of the star is
ρc, then the mass equation tells us that

m =

∫ r

0

4πr2ρ dr =
4

3
πρcr

3 + ... , (26)

where the ... represents higher order terms in r. Thus we have

Φ′ =
4
3πr

3ρc + 4πr3pc

r2
+ ... =

4π(ρc + 3pc)

3
r + ... → Φ = Φc +

2π(ρc + 3pc)

3
r2 + ... . (27)

Thus the TOV equations allow a solution with a smooth gravitational potential at r = 0.

C. Overall solution

Normally one solves the TOV equations by taking an equation of state p(ρ), and a central density ρc. One can
then write ρ(p) as an algebraic relation (no derivatives), and integrate the TOV equations for m′, Φ′, and p′ outward,
solving for m(r), Φ(r)− Φc, and p(r). One cannot solve for the constant Φc this way, but the TOV equations don’t
require the zero-point of potential. When (if?) the pressure drops to zero at some radius, we call that radius R the
surface of the star, set M = m(R), and then use the matching to the Schwarzschild solution to determine Φc.

D. Total mass and “gravitational energy”

At this point, we come back to the question of how the total mass of the star relates to the sum of all of the mass
elements. If we take a 3D spatial slice through the star – a surface of t = constant – we can see that the volume
element on that surface is

dV = (eΛ dr)(r dθ)(r sin θ dφ) = eΛr2 sin2 θ dr dθ dφ. (28)

There is then a mass obtained by adding up the energy (which for a star made of an ideal gas includes the rest mass
energy as well as kinetic energy of the particles) of all of the elements:∫

ρdV =

∫ R

0

eΛ4πr2ρdr. (29)

The total mass of the system is different from this, with a deficit of

δM = M −
∫ R

0

ρdV =

∫ R

0

4πr2ρdr −
∫ R

0

eΛ4πr2ρdr =

∫ R

0

4πr2(1− eΛ)ρdr. (30)

Since m > 0 and hence Λ > 0, we will have δM < 0: the total mass is less than the sum of the energy of the
constituent parts.

In the weak-field limit, where m/r � 1, we can approximate

1− eΛ = 1− 1√
1− 2m/r

≈ −m
r
, (31)

so

δM ≈
∫ R

0

4πr2
(
−m
r

)
ρ dr =

∫ M

0

−m
r

dm. (32)

Now what is interesting is that for a shell at radius r, −m/r is the Newtonian gravitational potential contributed
by mass interior to the shell, i.e. at r̃ with 0 ≤ r̃ < r. (The total gravitational potential φ is more negative than
−m/r, because it contains contributions from shells outside r.) Thus δM as written is the Newtonian gravitational
potential energy: −δM is the work done by gravity if the star is assembled from the inside out, one shell at a time.
We conclude that in general relativity, “gravitational potential energy” is part of the gravitational mass of a star.
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E. Gravitational redshift

We note that for a stationary observer (r, θ, and φ unchanging), the relation of proper to coordinate time is

dτ

dt
= eΦ. (33)

This means that a stationary source of radiation emitting at proper frequency ω0 will have observed frequency
ωobs = eΦω0 if seen at ∞. This factor is often described using the gravitational redshift zgrav:

1 + zgrav =
ω0

ω
= e−Φ. (34)

The gravitational redshift at the surface of a star is

1 + zgrav =
1√

1− 2M/R
. (35)

This is an “exact” result to all orders for a spherical star – no first-order approximations!

VII. EXAMPLE: CONSTANT-DENSITY STAR

For a general equation of state, the TOV equations must be solved numerically. However, a few cases can be done
analytically and are instructive. We will take here the case of a constant-density equation of state, ρ = ρ?, because
it is simple and illustrates some important points about relativistic stars (even though it is not very realistic). The
central condition is specified by a central pressure pc.

We first see that the mass integral is simple:

m′ = 4πr2ρ? → m =
4

3
πr3ρ?. (36)

Now Eqs. (21) and (22) can be combined to give

p′ = −m+ 4πr3p

r(r − 2m)
(ρ+ p) = −

4
3πr

3(ρ? + p)(ρ? + 3p)

r(r − 8
3πr

3ρ?)
= −4πr(ρ? + p)(ρ? + 3p)

3(1− 8
3πr

2ρ?)
. (37)

We can move the two terms with pressure to the left-hand side to get

dp

(ρ? + p)(ρ? + 3p)
= − 4πr

3(1− 8
3πr

2ρ?)
dr. (38)

This can be integrated to give

1

2
ln
ρ? + 3p

ρ? + p
=

1

4
ln

(
1− 8

3
πr2ρ?

)
+ const. (39)

By looking at the center of the star, we see that the constant is 1
2 ln ρ?+3pc

ρ?+pc
. If we define

ξ =
ρ? + 3p

ρ? + p
→ p = ρ?

ξ − 1

3− ξ
, (40)

then we find that

ξ = ξc

√
1− 8

3
πr2ρ?. (41)

Note that ξ is an increasing function of p, ranging from ξ = 1 when p = 0 to ξ → 3 as p→∞.
The radius R of the star is found when p drops to zero or when ξ = 1: this is at

R =

√
3

8πρ?
(1− ξ−2

c ). (42)
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The mass of the star is

M =
4

3
πR3ρ? (43)

and the radius-to-mass ratio is

R

M
=

3

4πρ?R2
=

2

1− ξ−2
c

. (44)

As we take this star and add mass (again keeping the constant density equation of state), R and ξc will increase.
However, there is a limit to this process: the central pressure approaches ∞ as ξc → 3. In this limit, we have:

R→
√

1

3πρ?
, M →

√
16

243πρ?
,

R

M
→ 9

4
, zgrav → 2. (45)

For nuclear density, ρ? = 2.3× 1014 g/cm3 = 2.3× 1017 kg/m3, we would have

Mmax =
4c3

9G
√

3πGρ?
= 1.5× 1031 kg = 7.5M�. (46)

The actual upper limit to M depends on the equation of state of the matter; in the case of neutron stars, it depends
on as-yet-uncertain properties of nuclear/QCD physics at very high densities, and this is an active area of research
in both astronomy and theoretical and experimental nuclear physics. In any case, any realistic equation of state has
some maximum mass Mmax, and because nuclear matter is compressible the true maximum mass is less than this (it
is probably close to 2M�). Trying to add more mass to such an object leads to a circumstance with no equilibrium
solution, and the object undergoes gravitational collapse and creates a black hole.


